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The equations governing the propagation of small perturbations to plane flow of 
a viscous incompressible conducting fluid are re-examined with special reference 
to the case when the constant unperturbed magnetic field and flow velocity 
are parallel. We use the relationship between two parameters in one equation 
and, without computations, show the following: If for a non-zero value of the 
Alfvth number the flow is unstable when the Reynolds and magnetic Reynolds 
numbers take particular finite values, then, for that value of the Alfvkn number, 
the flow cannot be completely stabilized for all finite Reynolds numbers, when 
the magnetic Reynolds number is finite. Since for a finite Alfv6n number one 
expects that unstable flow cannot be stabilized for all finite Reynolds numbers, 
unless the magnetic Reynolds number exceeds some value, we deduce the 
following: An unstable parallel flow of a finitely conducting fluid cannot be com- 
pletely stabilized for all finite Reynolds numbers by a constant magnetic field, 
which is coplanar with the flow. 

1. Introduction 
It is well known (Chandrasekhar 1961) that a suitable magnetic field tends to 

suppress the instability of various flows and in many cases it makes an otherwise 
unstable flow completely stable to small perturbations. For this reason many 
authors have investigated the stability effect of a magnetic field on various un- 
stable flows. Plane Poiseuille flow of a viscous fluid between two fixed planes is 
known to be unstable to infinitesimal pcrturbutions. Squire (1933) showed that 
the most unstable infinitesimal perturbations of this flow are two-dimensional. 

The stability of conducting plane Poiseuille flow in the presence of a magnetic 
field was investigated by several authors. Michael ( 1953) investigated purely 
magnetic perturbations and showed that a steady flow and a constant magnetic 
field parallel to the flow are not unstable to two-dimensional disturbances. 
Stuart (1954), Velikhov (1959) and Tarasov (1960) investigated the stability 
of the problem when both the velocity and the magnetic field, which is assumed 
to be constant and parallel to the flow, are perturbed. They showed that a suf- 
ficiently strong magnetic field stabilizes two-dimensional disturbances and, as 
it was recently pointed out by Hunt (1966), they incorrectly concluded that 
Squire’s theorem applied and deduced that such a magnetic field stabilizes the 
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flow to all infinitesimal disturbances. The case when a constant magnetic field 
is parallel to the fixed planes and inclined at an angle to the flow was investigated 
by Wooler (1961). Wooler showed that for this configuration there are three- 
dimensional disturbances which are unstable. However, he also deduced that 
a sufficiently strong magnet,ic field aligned with the flow stabilizes all infinitesimal 
perturbations. 

It was Hunt (1966) who showed that if the magnetic Reynolds number R,, 
is small, a constant magnetic field aligned with the flow cannot completely 
stabilize it. Using Tarasov's (1960) results Hunt indicated that a constant 
magnetic field parallel to the flow cannot stabilize it completely if R, is finite. 

Here we re-examine the case when the constant magnetic field is coplanar 
with the flow. We deduce that when R, is finite the effect of the magnetic field 
is negligible on waves propagating in a direction close to the normal to the 
magnetic field. Thus these waves cannot be stabilized by the presence of a 
magnctic field. We also show that if R, is infinite then a magnetic field, which 
is parallel to the flow and stabilizes two-dimensional disturbanccs, stabilizes 
three-dimensional disturbances as well. 

Our analysis below applies to plane parallel flows more general than Poiseuille, 
such as flow between two planes in relative parallel motion and flows of the 
boundary-layer type. 

2. Equations of the problem 
We choose a Cartesian co-ordinate system (xl, x2,  x3 )  and consider the motion 

of a viscous electrically conducting incompressible fluid. Let p be the density, 
(r the electrical conductivity, v the kinematic viscosity and V the velocity of 
the fluid. A solution of the equations of motion, in the steady state, satisfying 
appropriate boundary conditions is 

(1) v = N , ( ~ 2 ) ,  0, 01, €3 = B, = (&O, B3) 
where B is the magnetic field and B, and B, are constants. 

If we consider an infinitesimal perturbation of the steady state of the form 

where v is the perturbation velocity and b the perturbation magnetic field, we 
find that v and $ satisfy the following pair of equations (Stuart 1954) 
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and primes denote differentiation with respect to y. V, is a characteristic velocity 
of the flow and 6 a characteristic length. 

If we let 8[ = tan-l(y,/a,)] denote the angle between the velocity vector and 
the direction of propagation of the wave and $[= tan-l(B3/B,)] denote the 
angle between the magnetic field and the velocity vector, (3) and (4) become 
(Wooler 1961) 

i 
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where a, R = A,R and a, R, = h,Rm or R = R cos 8 and R, = R, cos 8. When y1 
and 8 are equal to  zero, (5) and (6) reduce to 
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If we eliminate w between (5) and (6) and set g5 = 0 we obtain, 
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where A [ = Bl/( 47rp)4 V,] is the Alfven number and 0 = d/dy.  

3. Discussion 
Wooler (1961) pointed out that equations (5) and (6) are very similar to 

equations (7) and (8) that govern the motion of waves propagating parallel to 
the direction of flow. A,, w, Ern and B, (1 +tan 8 tan 9) play the same role in (5) 
and (6) as a,, R, and B, in (7)  and (8). B, cos 8( 1 +tan 8 tan $) and B, are the 
components of the magnetic field along the direction of propagation for the two 
cases. 

The component of the magnetic field perpendicular to the direction of propaga- 
tion does not enter into the calculations and thus it does not affect the stability 
of the problem, no matter what the electrical conductivity of the fluid is. Thus 
it follows that if the magnetic field is almost perpendicular to the direction of 
wave propagation its effect on the stability of the problem is minimal. This is an 
important point and when Rm is finite, it does not depend on 9. If B, is infinite 
this is true only when q5 is different from zero. 

It was pointed out by Wooler (1961) that for a given $, say #,, we can find a, 
value of 8, 0,, so that 1 + tan$,tan8, vanishes. Equations (5) and (6) are then 
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decoupled and the magnetic field does not affect propagation in the direction 
4. We can then find an R,  say R, so that B, = Rcrit, where Rcrit is the minimum 
value of R for which the flow, in the absence of the magnetic field, becomes un- 
stable. The flow is then unstable to waves propagating in the direction of 0, for 
all R > R,. We can obviously choose a direction of propagation 0, slightly dif- 
ferent from B,, so that the coefficient of 

pf - A; @ (10) 

in ( 5 )  is very small and the effect of the magnetic field terms in (5) is minimal, 
in agreement with what was stated above. This argument apparently breaks 
down when q51 = 0 or 7~ because 0, has to be 5 in and there are not any unstable 
disturbances propagating a t  right angles to the direction of flow. 

If q5 = 0 and 0 + ? 8;. the coefficient of the expression (10) in (5) is constant. 
However, for finite values of R, when B is sufficiently close to the normal to 
the magnetic field R, is small and ( 6 )  shows that the expression (10) itself must 
be small. Thus we can make Em, and the effect of the magnetic field on the waves 
propagating in the direction 0, very small by choosing a 0 sufficiently close to &. 
Thus these waves will not be affected by the magnetic field and for some finite 
large R which depends on R, will be unstable, if the flow, in the absence of a 
magnetic field, is unstable. Our argument can be seen in terms of equation (9) 
as follows: 

If for a certain A ,  say A,, there is an R,, say R,,(A,) =t= 0, such that the dis- 
turbances described by (9) are unstable when 0 = 0 and R is greater than some 
finite value RE,,,, it  follows that for that A the disturbances described by (9) 
are unstable for all > R'& when R, = Rr8,, Since 

R = RcosB and R, = R,cos0, 

- 

it follows that waves propagating along the direction 0, where 

are unstable when 
0 = COS-' (Rmo/Rm); R, > R,,, (11) 

; A < A,; R,  > R,,. (12) 
RmRLit 

Rmo 
R > Rcrit = ~ 

Since for a given R, and a given flow one expects that a larger A would be a more 
stabilizing factor, the first inequality (12) must hold for all A < A,. Similarly, 
for a given flow and a given A ,  one expects that a larger R, will be a more 
stabilizing factor and therefore the flow will be unstable when 

R > Rcrit = R&it; A < A,; R,  < R,,; 0 = 0. 

As an example consider the case of plane Poiseuille flow (Stuart 1954). For 
small R,, RZfit = 5.5 x lo3 when R,A2 = 0.01. If we take A2 = 10, R,, is 0-001. 
Therefore waves propagating in the direction cos-l (O-OOl/R,) are unstable when 

R > Rcrit = 5.5 x 106R,; A2 < 10; R, 2 0.001. 

Note that when R, is of order unity or larger the direction of propagation 0, for 
these unstable waves, is close to the normal to the magnetic field. 

Hunt (1966) showed graphically how, by using two-dimensional solutions 
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[those for (7) and (S)], one could find the minimum critical R and the corre- 
sponding value of 8 for a given R, and A ,  and deduced that a parallel magnetic 
field cannot stabilize the flow completely. However, he restricted his analysis to 
the case when R,is small and the first term on the left-hand side of (6) is negligible. 
He also showed that, by using two-dimensional solutions for a given A ,  we could 
find the minimum critical Reynolds number for an arbitrary R,. Using the re- 
sults of Tarasov (1  960), who investigated two-dimensional disturbance for 
arbitrary A when R, is of order unity, Hunt indicated also that a parallel 
magnetic field cannot stabilize a plane Poiseuille flow when R, is finite. 

Hunt’s argument in the case of arbitrary R, is a little involved and the dif- 
ficulty with his analysis is that, for a given flow and A ,  one cannot decide whether 
the flow is stable or unstable for finite R,, unless one knows the functional 
dependence of Rcrit on R, (the shape of the Rcrit-Rm curve as Hunt calls it) 
for two-dimensional disturbances. Using Tarasov’s results Hunt concludes that, 
for a specified A,  if R, is greater than some value then Rcrlt is proportional to R,. 
The constant of proportionality, not given by Hunt but easily deduced from the 
way the straight line Rcrit - R, is set up, is the minimum of R!rit/R,o. 

With our argument, however, for a given flow and a given A we need only 
find an arbitrary pair R,,, RZrit ( = finite) and then use (1  1) in order to specify 
a direction along which the waves cannot propagate stably for all finite R when 
R, takes arbitrary finite values. Thus, it can be deduced straight away 
from Stuart’s results, and without the need to look into Tarasov’s data, that 
plane Poiseuille flow cannot be stabilized for all finite R when A and R, are 
finite. To show, for example, that the case R, = 10, A: = 100 is unstable, 
we take R,, = 0.0001. Stuart’s table 2 shows that when p= R,,A% = 0.01, 
Rzrit = 5.5 x 103. It then follows from (11) and (12) that when R, is 10 the flow 
is unstable when R exceeds 5-5 x 108. Since (12) holds for all A Q A,, we are in 
fact showing, by using Stuart’s results, that the flow is not completely stable for 
small or large A and large R, (= 10 in the present example), a case for which 
Stuart’s analysis is not applicable. Note also that for a fixed A ,  Stuart’s data 
(his table 2) show that the maximum value of Rkit/Rmo is only about three 
times as large as its minimum value. Thus, when R, is small and Stuart’s analysis 
applies, if we randomly use Stuart’s table 2, our Rcrit given by (12) will differ 
from the minimum Rcrit by not more than a factor of three, when R, A2 is large 
( >  0.05) and Rcrit, according to Hunt’s graphical method, becomes propor- 
tional to R,A2. 

Indeed, our argument implies that if we assume that for a specified flow and 
A there exists a pair of values R, ( =+= 0)’ R& ( = finite), we are in fact assuming, 
that for this configuration, there can be found a direction 8(R,) along which 
disturbances cannot propagate stably for all finite R when R, ( 2  Rm0) is finite. 
It seems plausible to us to assume that for a given arbitrary finite A an unstable 
flow cannot be stabilized for all finite R, unless R, exceeds some non-zero value, 
say R,,(A). We, therefore, deduce that an unstable parallel flow of a finitely 
conducting fluid cannot be stabilized completely for all finite Reynolds numbers 
by the pressure of an aligned magnetic field. Hunt (1966) reached the same con- 
clusion. His conclusion, however, was based on the assumption that the shape 
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of the R:fib - R, curve, for constant A and all velocity profiles at  all A ,  is similar 
to the one obtained by Stuart for small R, for the case of plane Poiseuille flow. 
This is a much more stringent condition than the one we use. 

Note that R,,, depends on A,,. As A ,  increases one expects R,, to decrease and 
the minimum of R&itlR,o, which is used in Hunt’s analysis when R, exceeds 
a certain unspecified value, to increase. Therefore for a fixed R, as A ,  increases, 
Rcrit and 8 increase. In  the case of Stuart’s work Hunt’s graphical method gives 

8 = cos-1 (::iz) ~ , for RmA2 2 0.05, 

and thus when R,A2 is large 8 is close to the normal to the magnetic field. 
Similarly for a fixed A as R, increases so does Rcrit. As R, tends to infinity 

Rerit also tends to infinity and our argument breaks down. However, when R, 
is infinite equation (6) becomes 

( U - G ) $  = (BI/&)(1+tan8tan$)v. (13) 

If q5 = 0, (13) shows that the v and $ do not depend explicitly on 8, except in the 
trivial ca,se 8 = in, when $ = v = 0. Thus if we eliminate 4 between ( 5 )  and (13) 
and set q5 equal to  zero, we obtain an equation for which Squire’s theorem, that 
two-dimensional disturbances are the most unstable, is applicable. Thus when 
R, is infinite and B, is zero, the value of A that stabilizes two-dimensional 
disturbances stabilizes the flow completely. 
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